1/2018-051-mikulikova

Posted on by

Mikulíková Zuzana

Church grammar school P.U.Oliva

Dlhé Hony 3522/2, 058 01 Poprad, Slovak Republic

zuzanaopr@gmail.com

THE MATHEMATICAL MODEL

 OF THE OPERATION PROBLEM PRESENTED

ON A PARTICULAR MODEL

 

Abstract: The aim of the thesis is to design a model of closed system M/G/1 for knitting production in the Svitex company. I strive to determine specific values of the machine idle time. The Poisson process for the occurrence of disturbances was used. This is consistent with the proposed pair of compatible hypotheses. The procedure described has proven to be correct. After postulation of the hypotheses, a specific closed system was proposed. When applying to a particular situation, a result using the equations and normative condition was elaborated.

Key words: mathematical model, Poisson process, mathematics operations.

JEL Classification: C20, C21

Bibliography

AMBROZY, M., 2012. Matematická prírodoveda a Martin Heidegger, In: Fyzika a etika VI. Nitra: UKF, ISBN 978-80-558-0085-1.

KINGMAN, J. F. C., 1992. Poisson Processes. Oxford: Oxford Science Publications, ISBN 978-0198536932.

MARKECHOVÁ, D., a TIRPÁKOVÁ, A., a STEHLÍKOVÁ, B., 2011. Základy štatistiky pre pedagógov, s.361., Univerzita Konštantína filozofa v Nitre, Nitra, ISBN 978-80-8094-899-3.

OSTERTAGOVÁ, E., 2011. Aplikácia Pearsnovho testu dobrej zhody v technickej praxi. Transfer inovácií 19/2011. Košice: TU, ISSN 1337-7094.

PLACKETT, R. L. 1983. Karl Pearson and the Chi-Squared Test, In: International Statistical Review / Revue Internationale de Statistique 51 (1), ISSN 0306-7734

YANG, T., POSNER, M. J. M., TEMPLETON, J. G. C., LI, H., 1994. An approximation method for the M/G/1 retrial queue with general retrial times, In: European Journal of Operational Research 76 (3), ISSN 0377-2217